冷めたコーヒー

Weniger, aber besser

最適化

非線型一変数関数の最小化(SciPy 使用)

これは何? 一変数関数 $f\colon\mathbb{R}\to\mathbb{R}$ を与えられた閉区間 $\Omega \subseteq \mathbb{R}$ 上で最小化する $x^\star$ を求める方法について扱う 最適化問題として記述すると以下のように表される: \begin{align} \min \quad &f(x) \\ \ma…

CVXPY を用いた等式制約付き最適化問題の求解

CVXPY による制約付き最適化問題を求解

劣微分の表現(定理2.50)

『非線形最適化の基礎』の pp.67 定理 2.50 に対する証明の補足です. ご指摘等ございましたら,@mirucaaura までご連絡ください. 参考文献 非線形最適化の基礎作者:福島 雅夫朝倉書店Amazon

関数の凸性とヘッセ行列の半正定値性の関係(定理 2.30)

『非線形最適化の基礎』の pp.47 定理 2.30 に対する証明の補足です. ご指摘等ございましたら,@mirucaaura までご連絡ください. 参考文献 非線形最適化の基礎作者:福島 雅夫朝倉書店Amazon

近接勾配法概説

はじめに 問題設定 勾配降下法 近接勾配法 近接作用素 おわりに Refference 更新ログ この記事は「数理最適化 Advent Calendar 2020」の24日目の記事です. 23 日目は @Atsushi_twi さんによる 数理最適化初心者のための(線形)割当問題の概要とscipy.optimiz…

SpeakerDeck のスライドの埋め込み

SpeakerDeck の埋め込み

リーマン多様体上の最適化の初歩と Pymanopt による数値実験

リーマン多様体上の最適化問題を,PythonのPymanoptソルバーを用いて実装する.

相補性問題の初歩と Python による数値解法

はじめに 相補性問題の定式化 相補性問題の再定式化 相補性問題に対するアルゴリズム アルゴリズム実装における注意点 B 劣微分 $V \in \partial_B \Phi(x)$ の導出 勾配ベクトル $\nabla\Psi(x)$ の導出 Python による実装 実装: 関数の定義 実装: 相補性問…

Python による数理最適化モデリングツール CVXPY の初歩

はじめに 数理最適化とは CVXPY 導入 数値実験 例1:線形計画問題(Linear Programming Problem; LP) Python によるサンプルコード 例2:最小二乗問題(制約付き) Python によるサンプルコード 例3:半正定値計画問題(Semidefinite Programming Problem; SDP) …